Review

name the following: HCl
HClO
HClO_{2}
HClO_{3}
HClO_{4}
$\mathrm{Fe}(\mathrm{OH})_{2}$
write the formulas
nitric acid
nitrous acid
hydronitric acid
magnesium hydroxide
name the following:
HCD hyarchluric amend
HCIO hypo chlorous ard
HClO_{2} chlorous acid
HClO_{3} chloric acid
HClO_{4} perchloric acid
$\mathrm{Fe}(\mathrm{OH})_{2} \operatorname{Iron}(\mathrm{II})$ hydroxide
write the formulas
nitric acid HNO_{3}
strong acids
$\mathrm{H}_{2} \mathrm{SO}_{4}$
HBr
HI
HNO_{3}
HClO_{4}
HCl
nitrous acid $\mathrm{H} \mathrm{NO}_{2}$
hydronitric acid
magnesium hydroxide
$\mathrm{Cl}_{3} \mathrm{~N}$

$$
\mathrm{M}_{\mathrm{j}}(\mathrm{OH})_{2}
$$

Titration

Acid ${ }^{\text {Base }}$			$\begin{aligned} & \mathrm{HX}+\mathrm{BOH} \rightarrow \mathrm{BX}+\mathrm{HOH} \\ & \mathrm{H}^{+1}+\mathrm{OH}^{-1} \rightarrow \mathrm{HOH} \end{aligned}$ $0.046 \mathrm{~mol} \quad 0.046 \mathrm{~mol}$			
M 0.81		1.85				
$\mathrm{mol} 0.046=0.046$				046	-0.046 mol	+0.046 mol
L 0.057		0.025		0	0	0.046 m

$0.81 \mathrm{M}=\frac{\mathrm{x} \mathrm{mol}}{0.057 \mathrm{~L}}$
$\mathrm{x}=0.046 \mathrm{~mol}$ acid $=0.046 \mathrm{~mol}$ base
$\frac{0.046 \mathrm{~mol}}{0.025 \mathrm{~L}}=1.85 \mathrm{M}$ base

Phenolphthalein

-- commonly used indicator for titrations and is a very weak acid.
$\frac{\mathrm{H}^{- \text {phph }_{(a q)}}}{\text { colorless }} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq)})+\underset{\text { pink }}{\text { phph }_{(\mathrm{aq})}}$

Titration of an Acid with a Base using phenolphthalein indicator

Figure 1
Figure 2

Figure 3

Startpoint Slow Down Endpoint Too Far

Good Eaquodit

Bad Entpoint (Ovenly Tirated)

What is happening to the pH as you titrate?

What is happening to the pH as you titrate?

$\mathrm{H}^{+} \mathrm{Cl} \mathrm{Na}^{+} \mathrm{OH}$

